翻訳と辞書
Words near each other
・ Comp.* hierarchy
・ COMP128
・ Compa-ratio
・ Compact
・ Compact (cosmetics)
・ Compact (newspaper)
・ Compact (TV series)
・ Compact Application Solution Language
・ Compact area group approach
・ Compact Books
・ Compact Camera Port 2
・ Compact car
・ Compact cardinal
・ Compact Cassette
・ Compact City
Compact closed category
・ Compact complement topology
・ Compact convergence
・ Compact dimension
・ Compact disc
・ Compact Disc + Extended Graphics
・ Compact Disc and DVD copy protection
・ Compact Disc bronzing
・ Compact Disc Digital Audio
・ Compact Disc File System
・ Compact Disc manufacturing
・ Compact Disc subcode
・ Compact Disco
・ Compact Disk Dummies
・ Compact element


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Compact closed category : ウィキペディア英語版
Compact closed category
In category theory, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category with finite-dimensional vector spaces as objects and linear maps as morphisms.
== Symmetric compact closed category ==

A symmetric monoidal category (\mathbf,\otimes,I) is compact closed if every object A \in C has a dual object. If this holds, the dual object is unique up to canonical isomorphism, and it is denoted A^
*.
In a bit more detail, an object A^
* is called the dual of A if it is equipped with two morphisms called the unit \eta_A:I\to A^
*\otimes A and the counit \varepsilon_A:A\otimes A^
*\to I, satisfying the equations
:\lambda_A\circ(\varepsilon_A\otimes A)\circ\alpha_^\circ(A\otimes\eta_A)\circ\rho_A^=\mathrm_A
and
:\rho_\circ(A^
*\otimes\varepsilon_A)\circ\alpha_\circ(\eta_A\otimes A^
*)\circ\lambda_^=\mathrm_,
where \lambda,\rho are the introduction of the unit on the left and right, respectively.
For clarity, we rewrite the above compositions diagramatically. In order for (\mathbf,\otimes,I) to be compact closed, we need the following composites to equal \mathrm_A:
: A\xrightarrow A\otimes I\xrightarrowA\otimes (A^
*\otimes A)\xrightarrow (A\otimes A^
*)\otimes A\xrightarrow I\otimes A\xrightarrow A
and \mathrm_:
: A^
*\xrightarrow I\otimes A^
*\xrightarrow(A^
*\otimes A)\otimes A^
*\xrightarrow A^
*\otimes (A\otimes A^
*)\xrightarrow A^
*\otimes I\xrightarrow A^
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Compact closed category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.